ANOMALY FREE SUPERGRAVITY IN D=10: I) THE BIANCHI IDENTITIES AND THE BOSONIC LAGRANGIAN

Author:

D’AURIA RICCARDO12,FRÉ PIETRO12,RACITI MARIO3,RIVA FRANCO3

Affiliation:

1. Dipartimento di Fisica Teorica Universita degli Studi di Torino, Corso M. d’Azeglio 46, I-10125, Torino, Italy

2. INFN, Sezione di Torino, Italy

3. Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, I-20133, Milano, Italy

Abstract

Using a theorem by Bonora-Pasti and Tonin on the existence of a solution for D=10N=1 Bianchi identities in the presence of a Lorentz Chern Simons term, we find an explicit parametrization of the superspace curvatures. Our solution depends only on one free parameter which can be reabsorbed in a field redefinition of the dilaton and of the gravitello. We emphasize that the essential point which enables us to obtain a closed form for the curvature parametrizations and hence for the supersymmetry transformation rules is the use of first order formalism. The spin connection is known once the torsion is known. This latter, rather than being identified with Hµνρ as it is usually done in the literature, is related to it by a differential equation which reduces to the algebraic relation Hµνρ = - 3Tµνρ e4/3σ only at γ1=0 (γ1 being proportional to κ/g2). The solution of the Bianchi identities exhibited in this paper corresponds to a D=10 anomaly free supergravity (AFS). This theory is unique in first order formalism but corresponds to various theories in second order formalism. Indeed the torsion equation is a differential equation which, in order to be solved must be supplemented with boundary conditions. One wonders whether supplemented with a judicious choice of boundary conditions for the torsion equation, AFS yields all the interaction terms found in the effective theory of the heterotic string (ETHS). In this respect two remarks are in order. Firstly it appears that solving the torsion equation iteratively with Tµνρ = -1/3Hµνρ e-4/3σ as starting point all the terms of ETHS except those with a ζ(3) coefficient show up. (Whether the coefficient agree is still to be checked.) Secondly, as shown in this paper the rheonomic solution of the super Poincaré Bianchi identities is unique. Hence additional interaction terms can be added to the Lagrangian only by modifying the rheonomic parametrization of the [Formula: see text]-curvature. The only assumption made in our paper is that [Formula: see text] has at most ψ∧ψ∧V components (sector (1,2)). Correspondingly the only room left for a modification of the present theory is the addition of a (0, 3) part in the rheonomic parametrization of [Formula: see text]. When this work was already finished a conjecture was published by Lechner Pasti and Tonin that such a generalization of AFS might exist and be responsible for the ζ(3) missing term. Indeed if we were able to solve the [Formula: see text]-Bianchi with this new (0, 3)-part then the torsion equation would be modified via new terms which, in second order formalism, lead to additional gravitational interactions. The equation of motion of Anomaly Free Supergravity can be worked out from the Bianchi identities: we indicate through which steps. The corresponding Lagrangian could be constructed with the standard procedures of the rheonomy approach. In this paper we limit ourselves to the bosonic sector of such a Lagrangian and we show that it can indeed be constructed in such a way as to produce the relation between Hµνρ and Tµνρ as a variational equation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3