A VISION-BASED LOCATION POSITIONING SYSTEM VIA AUGMENTED REALITY: AN APPLICATION IN HUMANOID ROBOT NAVIGATION

Author:

MOHARERI OMID1,RAD AHMAD B.2

Affiliation:

1. Electrical and Computer Engineering Department, University of British Columbia, 2332 Main Mall, Vancouver, BC V6T 1Z4, Canada

2. School of Engineering Science, Simon Fraser University, 250-13450-102nd Avenue, Surrey, BC V3T 0A3, Canada

Abstract

In this paper, we present a vision-based localization system using mobile augmented reality (MAR) and mobile audio augmented reality (MAAR) techniques, applicable to both humans and humanoid robots navigation in indoor environments. In the first stage, we propose a system that recognizes the location of a user from the image sequence of an indoor environment using its onboard camera. The location information is added to the user's view in the form of 3D objects and audio sounds with location information and navigation instruction content via augmented reality (AR). The location is recognized by using the prior knowledge about the layout of the environment and the location of the AR markers. The image sequence can be obtained using a smart phone's camera and the marker detection, 3D object placement and audio augmentation will be performed by the phone's operating processor and graphical/audio modules. Using this system will majorly reduce the hardware complexity of such navigation systems, as it replaces a system consisting of a mobile PC, wireless camera, head-mounted displays (HMD) and a remote PC with a smart phone with camera. In the second stage, the same algorithm is employed as a novel vision-based autonomous humanoid robot localization and navigation approach. The proposed technique is implemented on a humanoid robot NAO and improves the robot's navigation and localization performance previously done using an extended Kalman filter (EKF) by presenting location-based information to the robot through different AR markers placed in the robot environment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3