Affiliation:
1. Computer Vision Laboratory, Institute of Advanced Computer Studies, University of Maryland, College Park, USA
Abstract
The human visual system observes and understands a scene/image by making a series of fixations. Every "fixation point" lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the "fixation point". Segmenting the region containing the fixation is equivalent to finding the enclosing contour — a connected set of boundary edge fragments in the edge map of the scene — around the fixation. This enclosing contour should be a depth boundary. We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases1 demonstrate the promise of the approach.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献