UPPER LIMB POWERED EXOSKELETON

Author:

ROSEN JACOB1,PERRY JOEL C.1

Affiliation:

1. Department of Electrical Engineering, University of Washington, Box 352500, Seattle, Washington, 98195-2500, USA

Abstract

An exoskeleton is a wearable robot with joints and links corresponding to those of the human body. With applications in rehabilitation medicine, virtual reality simulation, and teleoperation, exoskeletons offer benefits for both disabled and healthy populations. Analytical and experimental approaches were used to develop, integrate, and study a powered exoskeleton for the upper limb and its application as an assistive device. The kinematic and dynamic dataset of the upper limb during daily living activities was one among several factors guiding the development of an anthropomorphic, seven degree-of-freedom, powered arm exoskeleton. Additional design inputs include anatomical and physiological considerations, workspace analyses, and upper limb joint ranges of motion. Proximal placement of motors and distal placement of cable-pulley reductions were incorporated into the design, leading to low inertia, high-stiffness links, and back-drivable transmissions with zero backlash. The design enables full glenohumeral, elbow, and wrist joint functionality. Establishing the human-machine interface at the neural level was facilitated by the development of a Hill-based muscle model (myoprocessor) that enables intuitive interaction between the operator and the wearable robot. Potential applications of the exoskeleton as a wearable robot include (i) an assistive (orthotic) device for human power amplifications, (ii) a therapeutic and diagnostics device for physiotherapy, (iii) a haptic device in virtual reality simulation, and (iv) a master device for teleoperation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Mechanical Engineering

Reference20 articles.

1. B. Hannaford and S. Venema, Virtual Environment and Advanced Interface Design, eds. W. Barfield and T. A. Furness (Oxford University Press, Oxford, 1995) pp. 415–436.

2. G. C. Burdea, Force and Touch Feedback for Virtual Reality (John Wiley & Sons, New York, 1996) p. 339.

3. Project GROPEHaptic displays for scientific visualization

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3