Affiliation:
1. Department of Electronic Technology, University of Málaga, ETSI Telecomunicación, Campus Teatinos s/n, Málaga, 29071, Spain
Abstract
Learning by imitation is a natural and intuitive way to teach social robots new behaviors. While these learning systems can use different sensory inputs, vision is often their main or even their only source of input data. However, while many vision-based robot learning by imitation (RLbI) architectures have been proposed in the last decade, they may be difficult to compare due to the absence of a common, structured description. The first contribution of this survey is the definition of a set of standard components that can be used to describe any RLbI architecture. Once these components have been defined, the second contribution of the survey is an analysis of how different vision-based architectures implement and connect them. This bottom–up, structural analysis of architectures allows to compare different solutions, highlighting their main advantages and drawbacks, from a more flexible perspective than the comparison of monolithic systems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献