Interpolated family of non-group-like simple integral fusion rings of Lie type

Author:

Liu Zhengwei12,Palcoux Sebastien3ORCID,Ren Yunxiang4

Affiliation:

1. Department of Mathematics, Yau Mathematical Sciences Center, Tsinghua University, P. R. China

2. Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing 100084, P. R. China

3. Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Huairou District, Beijing, P. R. China

4. Department of Physics, Harvard University, Cambridge 02138, USA

Abstract

This paper is motivated by the quest of a non-group irreducible finite index depth 2 maximal subfactor. We compute the generic fusion rules of the Grothendieck ring of Rep(PSL(2,[Formula: see text])), [Formula: see text] prime-power, by applying a Verlinde-like formula on the generic character table. We then prove that this family of fusion rings [Formula: see text] interpolates to all integers [Formula: see text], providing (when [Formula: see text] is not prime-power) the first example of infinite family of non-group-like simple integral fusion rings. Furthermore, they pass all the known criteria of (unitary) categorification. This provides infinitely many serious candidates for solving the famous open problem of whether there exists an integral fusion category which is not weakly group-theoretical. We prove that a complex categorification (if any) of an interpolated fusion ring [Formula: see text] (with [Formula: see text] non-prime-power) cannot be braided, and so its Drinfeld center must be simple. In general, this paper proves that a non-pointed simple fusion category is non-braided if and only if its Drinfeld center is simple; and also that every simple integral fusion category is weakly group-theoretical if and only if every simple integral modular fusion category is pointed.

Funder

Tsinghua University

National Key R&D Programmes of China

Foreign Youth Talent Program from the Ministry of Sciences and Technology of China

BIMSA Start-up Research Fund

Army Research Office

Templeton Religion Trust

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3