Orthogonal decompositions and twisted isometries

Author:

Rakshit Narayan1,Sarkar Jaydeb1ORCID,Suryawanshi Mansi1

Affiliation:

1. Statistics and Mathematics Unit, Indian Statistical Institute, 8th Mile, Mysore Road, Bangalore, Karnataka - 560059, India

Abstract

Let [Formula: see text]. Let [Formula: see text] be [Formula: see text] commuting unitaries on some Hilbert space [Formula: see text], and suppose [Formula: see text], [Formula: see text]. An [Formula: see text]-tuple of isometries [Formula: see text] on [Formula: see text] is called [Formula: see text]-twisted isometry with respect to [Formula: see text] (or simply [Formula: see text]-twisted isometry if [Formula: see text] is clear from the context) if [Formula: see text]’s are in the commutator [Formula: see text], and [Formula: see text], [Formula: see text] We prove that each [Formula: see text]-twisted isometry admits a von Neumann–Wold type orthogonal decomposition, and prove that the universal [Formula: see text]-algebra generated by [Formula: see text]-twisted isometries is nuclear. We exhibit concrete analytic models of [Formula: see text]-twisted isometries, and establish connections between unitary equivalence classes of the irreducible representations of the [Formula: see text]-algebras generated by [Formula: see text]-twisted isometries and the unitary equivalence classes of the nonzero irreducible representations of twisted noncommutative tori. Our motivation of [Formula: see text]-twisted isometries stems from the classical rotation [Formula: see text]-algebras and Heisenberg group [Formula: see text]-algebras.

Funder

Science and Engineering Research Board

National Board for Higher Mathematics

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Von Neumann Inequality and Dilation Theory on Regular $${{\mathcal {U}}}$$-Twisted Polyballs;Results in Mathematics;2024-06-16

2. On Decomposition for Pairs of Twisted Contractions;Complex Analysis and Operator Theory;2024-03-10

3. ORTHOGONAL DECOMPOSITIONS AND TWISTED ISOMETRIES. II;J OPERAT THEOR;2024

4. Classification of doubly $${{\mathcal {U}}}$$-commuting row isometries;Banach Journal of Mathematical Analysis;2023-10

5. Wold-type decomposition for Un-twisted contractions;Journal of Mathematical Analysis and Applications;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3