HAMILTONIAN CIRCLE ACTIONS WITH MINIMAL FIXED SETS

Author:

LI HUI1,TOLMAN SUSAN2

Affiliation:

1. School of Mathematics, Box 173, Suzhou University, Suzhou, 215006, P. R. China

2. Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA

Abstract

Consider an effective Hamiltonian circle action on a compact symplectic 2n-dimensional manifold (M, ω). Assume that the fixed set MS1 is minimal, in two senses: It has exactly two components, X and Y, and dim (X) + dim (Y) = dim (M) - 2. We prove that the integral cohomology ring and Chern classes of M are isomorphic to either those of ℂℙn or (if n ≠ 1 is odd) to those of [Formula: see text], the Grassmannian of oriented two-planes in ℝn+2. In particular, Hi(M;ℤ) = Hi(ℂℙn; ℤ) for all i, and the Chern classes of M are determined by the integral cohomology ring. We also prove that the fixed set data of M agrees exactly with the fixed set data for one of the standard circle actions on one of these two manifolds. In particular, we show that there are no points with stabilizer ℤk for any k > 2. The same conclusions hold when MS1 has exactly two components and the even Betti numbers of M are minimal, that is, b2i(M) = 1 for all i ∈ {0, …, ½ dim (M)}. This provides additional evidence that very few symplectic manifolds with minimal even Betti numbers admit Hamiltonian actions.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hamiltonian circle actions with minimal isolated fixed points;Mathematische Zeitschrift;2023-05-19

2. Hamiltonian circle actions on complete intersections;Bulletin of the London Mathematical Society;2022-02

3. Hamiltonian circle actions with almost minimal isolated fixed points;Journal of Geometry and Physics;2021-05

4. A note on the Hard Lefschetz property of symplectic structures;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2019-10-25

5. Hamiltonian circle actions with fixed point set almost minimal;Mathematische Zeitschrift;2019-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3