Affiliation:
1. Department of Mathematics and Research Institute of Mathematics, Seoul National University, Seoul 151-747, Korea
Abstract
We compare the Kontsevich moduli space [Formula: see text] of stable maps to projective space with the quasi-map space ℙ( Sym d(ℂ2) ⊗ ℂn)//SL(2). Consider the birational map [Formula: see text] which assigns to an n tuple of degree d homogeneous polynomials f1, …, fn in two variables, the map f = (f1 : ⋯ : fn) : ℙ1 → ℙn-1. In this paper, for d = 3, we prove that [Formula: see text] is the composition of three blow-ups followed by two blow-downs. Furthermore, we identify the blow-up/down centers explicitly in terms of the moduli spaces [Formula: see text] with d = 1, 2. In particular, [Formula: see text] is the SL(2)-quotient of a smooth rational projective variety. The degree two case [Formula: see text], which is the blow-up of ℙ( Sym 2ℂ2 ⊗ ℂn)//SL(2) along ℙn-1, is worked out as a preliminary example.
Publisher
World Scientific Pub Co Pte Lt
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献