On the Conley conjecture for Reeb flows

Author:

Ginzburg Viktor L.1,Gürel Başak Z.2,Macarini Leonardo3

Affiliation:

1. Department of Mathematics, UC Santa Cruz, Santa Cruz, CA 95064, USA

2. Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

3. Universidade Federal do Rio de Janeiro, Instituto de Matemática, Cidade Universitária, CEP 21941-909, Rio de Janeiro, Brazil

Abstract

In this paper, we prove the existence of infinitely many closed Reeb orbits for a certain class of contact manifolds. This result can be viewed as a contact analogue of the Hamiltonian Conley conjecture. The manifolds for which the contact Conley conjecture is established are the pre-quantization circle bundles with aspherical base. As an application, we prove that for a surface of genus at least two with a non-vanishing magnetic field, the twisted geodesic flow has infinitely many periodic orbits on every low energy level.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. S1$S^1$‐equivariant contact homology for hypertight contact forms;Journal of Topology;2022-07-07

2. Two closed orbits for non-degenerate Reeb flows;Mathematical Proceedings of the Cambridge Philosophical Society;2020-02-21

3. Automatic transversality in contact homology II: filtrations and computations;Proceedings of the London Mathematical Society;2019-11-05

4. Lusternik–Schnirelmann theory and closed Reeb orbits;Mathematische Zeitschrift;2019-08-05

5. On the filtered symplectic homology of prequantization bundles;International Journal of Mathematics;2018-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3