Affiliation:
1. Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
Abstract
We give presentations of the asymptotic expansions of the Kashaev invariant of hyperbolic knots with seven crossings. As the volume conjecture states, the leading terms of the expansions present the hyperbolic volume and the Chern–Simons invariant of the complements of the knots. As coefficients of the expansions, we obtain a series of new invariants of the knots. This paper is a continuation of the previous papers [T. Ohtsuki, On the asymptotic expansion of the Kashaev invariant of the [Formula: see text] knot, Quantum Topol. 7 (2016) 669–735; T. Ohtsuki and Y. Yokota, On the asymptotic expansion of the Kashaev invariant of the knots with 6 crossings, to appear in Math. Proc. Cambridge Philos. Soc.], where the asymptotic expansions of the Kashaev invariant are calculated for hyperbolic knots with five and six crossings. A technical difficulty of this paper is to use 4-variable saddle point method, whose concrete calculations are far more complicated than the previous papers.
Funder
Japan Society for the Promotion of Science
Publisher
World Scientific Pub Co Pte Lt
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献