MULTIPLICITY-FREE DECOMPOSITIONS OF THE MINIMAL REPRESENTATION OF THE INDEFINITE ORTHOGONAL GROUP

Author:

MORIWAKI MASAYASU1

Affiliation:

1. Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima Hiroshima, 739-8526, Japan

Abstract

Kazhdan, Kostant, Binegar–Zierau and Kobayashi–Ørsted constructed a distinguished infinite-dimensional irreducible unitary representation π of the indefinite orthogonal group G = O(2p, 2q) for p, q ≥ 1 with p + q > 2, which has the smallest Gelfand–Kirillov dimension 2p + 2q - 3 among all infinite-dimensional irreducible unitary representations of G and hence is called the minimal representation. We consider, for which subgroup G′ of G, the restriction π|G′ is multiplicity-free. We prove that the restriction of π to any subgroup containing the direct product group U(p1) × U(p2) × U(q) for p1, p2 ≥ 1 with p1 + p2 = p is multiplicity-free, whereas the restriction to U(p1) × U(p2) × U(q1) × U(q2) for q1, q2 ≥ 1 with q1 + q2 = q has infinite multiplicities.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Reference16 articles.

1. Unitarization of a singular representation ofSO(p, q)

2. Tensor Square of the Minimal Representation of O(p, q)

3. Transcending classical invariant theory

4. Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations

5. D. Kazhdan, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progress in Mathematics 92, eds.  Connes (Birkhäuser, Boston, 1990) pp. 125–158.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Branching laws for small unitary representations of GL(n, ℂ);International Journal of Mathematics;2014-06

2. Varna Lecture on L 2-Analysis of Minimal Representations;Lie Theory and Its Applications in Physics;2013

3. Algebraic Analysis of Minimal Representations;Publications of the Research Institute for Mathematical Sciences;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3