A CLASSIFICATION OF SMOOTH EMBEDDINGS OF FOUR-MANIFOLDS IN SEVEN-SPACE, II

Author:

CROWLEY DIARMUID1,SKOPENKOV ARKADIY23

Affiliation:

1. Hausdorff Research Institute for Mathematics, Universität Bonn, Poppelsdorfer Allee 82, D-53115 Bonn, Germany

2. Department of Differential Geometry, Faculty of Mechanics and Mathematics, Moscow State University, 119992, Moscow, Russia

3. Independent University of Moscow, B. Vlasyevskiy, 11, 119002, Moscow, Russia

Abstract

Let N be a closed connected smooth four-manifold with H1(N; ℤ) = 0. Our main result is the following classification of the set E7(N) of smooth embeddings N → ℝ7 up to smooth isotopy. Haefliger proved that E7(S4) together with the connected sum operation is a group isomorphic to ℤ12. This group acts on E7(N) by an embedded connected sum. Boéchat and Haefliger constructed an invariant ℵ: E7(N) → H2(N;ℤ) which is injective on the orbit space of this action; they also described im (ℵ). We determine the orbits of the action: for u ∈ im (ℵ) the number of elements in ℵ-1(u) is GCD (u/2, 12) if u is divisible by 2, or is GCD(u, 3) if u is not divisible by 2. The proof is based on Kreck's modified formulation of surgery.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Embeddings of Non-Simply-Connected 4-Manifolds in 7-Space. I. Classification Modulo Knots;Moscow Mathematical Journal;2021-02

2. Embeddings of non-simply-connected 4-manifolds in 7-space. II. On the smooth classification;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2021-01-22

3. Classification of knotted tori;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2019-01-22

4. How do autodiffeomorphisms act on embeddings?;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2017-12-28

5. When is the set of embeddings finite up to isotopy?;International Journal of Mathematics;2015-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3