Some results on equivariant contact geometry for partial flag varieties

Author:

Crooks Peter1,Rayan Steven2

Affiliation:

1. Department of Mathematics, University of Toronto, 40 St. George St., Toronto, ON, M5S 2E4, Canada

2. Department of Mathematics and Statistics, University of Saskatchewan, 106 Wiggins Rd., Saskatoon, SK, S7N 5E6, Canada

Abstract

We study equivariant contact structures on complex projective varieties arising as partial flag varieties [Formula: see text], where [Formula: see text] is a connected, simply-connected complex simple group of type ADE and [Formula: see text] is a parabolic subgroup. We prove a special case of the LeBrun-Salamon conjecture for partial flag varieties of these types. The result can be deduced from Boothby’s classification of compact simply-connected complex contact manifolds with transitive action by contact automorphisms, but our proof is completely independent and relies on properties of [Formula: see text]-equivariant vector bundles on [Formula: see text]. A byproduct of our argument is a canonical, global description of the unique [Formula: see text]-invariant contact structure on the isotropic Grassmannian of 2-planes in [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Reference13 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex adjoint orbits in Lie theory and geometry;Expositiones Mathematicae;2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3