A weak expectation property for operator modules, injectivity and amenable actions

Author:

Bearden Alex1,Crann Jason2ORCID

Affiliation:

1. Department of Mathematics, The University of Texas at Tyler, Tyler, TX 75799, USA

2. School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada

Abstract

We introduce an equivariant version of the weak expectation property (WEP) at the level of operator modules over completely contractive Banach algebras [Formula: see text]. We prove a number of general results — for example, a characterization of the [Formula: see text]-WEP in terms of an appropriate [Formula: see text]-injective envelope, and also a characterization of those [Formula: see text] for which [Formula: see text]-WEP implies WEP. In the case of [Formula: see text], we recover the [Formula: see text]-WEP for [Formula: see text]-[Formula: see text]-algebras in recent work of Buss–Echterhoff–Willett [A. Buss, S. Echterhoff and R. Willett, The maximal injective crossed product, to appear in Ergodic Theory Dynam. Systems, https://doi.org/10.1017/etds.2019.25 ]. When [Formula: see text], we obtain a dual notion for operator modules over the Fourier algebra. These dual notions are related in the setting of dynamical systems, where we show that a [Formula: see text]-dynamical system [Formula: see text] with [Formula: see text] injective is amenable if and only if [Formula: see text] is [Formula: see text]-injective if and only if the crossed product [Formula: see text] is [Formula: see text]-injective. Analogously, we show that a [Formula: see text]-dynamical system [Formula: see text] with [Formula: see text] nuclear and [Formula: see text] exact is amenable if and only if [Formula: see text] has the [Formula: see text]-WEP if and only if the reduced crossed product [Formula: see text] has the [Formula: see text]-WEP.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3