A note on Hayman’s conjecture

Author:

An Ta Thi Hoai12ORCID,Phuong Nguyen Viet3

Affiliation:

1. Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, 10307 Hanoi, Vietnam

2. Institute of Mathematics and Applied Sciences (TIMAS), Thang Long University, Hanoi, Vietnam

3. Thai Nguyen University of Economics and Business Administration, Vietnam

Abstract

In this paper, we will give suitable conditions on differential polynomials [Formula: see text] such that they take every finite nonzero value infinitely often, where [Formula: see text] is a meromorphic function in complex plane. These results are related to Problems 1.19 and 1.20 in a book of Hayman and Lingham [Research Problems in Function Theory, preprint (2018), https://arxiv.org/pdf/1809.07200.pdf ]. As consequences, we give a new proof of the Hayman conjecture. Moreover, our results allow differential polynomials [Formula: see text] to have some terms of any degree of [Formula: see text] and also the hypothesis [Formula: see text] in [Theorem 2 of W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11(2) (1995) 355–373] is replaced by [Formula: see text] in our result.

Funder

National Foundation for Science and Technology Development

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zeros and uniqueness problems related to $$\varvec{F^{(k)}-\alpha (z)}$$;Indian Journal of Pure and Applied Mathematics;2024-09-02

2. On Some Results of Mues, Bergweiler and Eremenko Concerning Differential Polynomials;Computational Methods and Function Theory;2024-06-11

3. SOME RESULTS ON VALUE DISTRIBUTION OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENCE POLYNOMIALS;Journal of Applied Analysis & Computation;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3