A noncommutative generalization of Thurston’s gluing equations

Author:

Morvan Xavier1ORCID

Affiliation:

1. Section de Mathématiques, Université de Genève, 2-4 Rue du Lièvre, Case Postale 64, 1211 Genève 4, Suisse

Abstract

In his famous Princeton Notes, Thurston introduced the so-called gluing equations defining the deformation variety. Later, Kashaev defined a noncommutative ring from H-triangulations of 3-manifolds and observed that for trefoil and figure-eight knot complements the abelianization of this ring is isomorphic to the ring of regular functions on the deformation variety, Kashaev, [Formula: see text]-groupoids in knot theory, Geom. Dedicata 150(1) (2010) 105–130; Kashaev, Noncommutative teichmüller spaces and deformation varieties of knot completeness; Kashaev, Delta-groupoids and ideal triangulation in Chern–Simons gauge theory: 20 Years After, AMS/IP Studies Advanced Mathematics, Vol. 50 (American Mathematical Society, RI, 2011). In this paper, we prove that this is true for any knot complement in a homology sphere. We also analyze some examples on other manifolds.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3