The Selberg–Weil–Kobayashi rigidity theorem: The rank one solvable case

Author:

Baklouti A.1,Elaloui N.1,Kedim I.2

Affiliation:

1. Department of Mathematics, Faculty of Sciences at Sfax, Sfax University, Route de Soukra, Sfax 3000, Tunisia

2. Department of Mathematics, Faculty of Sciences of Bizerte, University of Carthage, Carthage 1054, Tunisia

Abstract

A local rigidity theorem was proved by Selberg and Weil for Riemannian symmetric spaces and generalized by Kobayashi for a non-Riemannian homogeneous space [Formula: see text], determining explicitly which homogeneous spaces [Formula: see text] allow nontrivial continuous deformations of co-compact discontinuous groups. When [Formula: see text] is assumed to be exponential solvable and [Formula: see text] is a maximal subgroup, an analog of such a theorem states that the local rigidity holds if and only if [Formula: see text] is isomorphic to the group Aff([Formula: see text]) of affine transformations of the real line (cf. [L. Abdelmoula, A. Baklouti and I. Kédim, The Selberg–Weil–Kobayashi rigidity theorem for exponential Lie groups, Int. Math. Res. Not. 17 (2012) 4062–4084.]). The present paper deals with the more general context, when [Formula: see text] is a connected solvable Lie group and [Formula: see text] a maximal nonnormal subgroup of [Formula: see text]. We prove that any discontinuous group [Formula: see text] for a homogeneous space [Formula: see text] is abelian and at most of rank 2. Then we discuss an analog of the Selberg–Weil–Kobayashi local rigidity theorem in this solvable setting. In contrast to the semi-simple setting, the [Formula: see text]-action on [Formula: see text] is not always effective, and thus the space of group theoretic deformations (formal deformations) [Formula: see text] could be larger than geometric deformation spaces. We determine [Formula: see text] and also its quotient modulo uneffective parts when the rank [Formula: see text]. Unlike the context of exponential solvable case, we prove the existence of formal colored discontinuous groups. That is, the parameter space admits a mixture of locally rigid and formally nonrigid deformations.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3