A KHOVANOV TYPE INVARIANT DERIVED FROM AN UNORIENTED HQFT FOR LINKS IN THICKENED SURFACES

Author:

TAGAMI KEIJI1

Affiliation:

1. Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan

Abstract

Two link diagrams on compact surfaces are strongly equivalent if they are related by Reidemeister moves and orientation preserving homeomorphisms of the surfaces. They are stably equivalent if they are related by the two previous operations and adding or removing handles. Turaev and Turner constructed a link homology for each stable equivalence class by applying an unoriented topological quantum field theory (TQFT) to a geometric chain complex similar to Bar-Natan's one. In this paper, by using an unoriented homotopy quantum field theory (HQFT), we construct a link homology for each strong equivalence class. Moreover, our homology yields an invariant of links in the oriented I-bundle of a compact surface.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Sharpness of Some Lower Bounds for the Crossing Number of Links in Thickened Surfaces;Siberian Mathematical Journal;2022-11

2. Knot diagrams on a punctured sphere as a model of string figures;Journal of Knot Theory and Its Ramifications;2020-10

3. Homological invariants of links in a thickened surface;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2019-12-06

4. Bar-Natan’s geometric complex and a categorification of the Dye–Kauffman–Miyazawa polynomial;Journal of Knot Theory and Its Ramifications;2016-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3