Cyclic parallel hypersurfaces in complex Grassmannians of rank 2

Author:

Lee Hyunjin1,Suh Young Jin2ORCID

Affiliation:

1. The Research Institute of Real and Complex Manifolds, Kyungpook National University, Daegu 41566, Republic of Korea

2. Department of Mathematics and RIRCM, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

The object of the paper is to study cyclic parallel hypersurfaces in complex (hyperbolic) two-plane Grassmannians which have a remarkable geometric structure as Hermitian symmetric spaces of rank 2. First, we prove that if the Reeb vector field belongs to the orthogonal complement of the maximal quaternionic subbundle, then the shape operator of a cyclic parallel hypersurface in complex hyperbolic two-plane Grassmannians is Reeb parallel. By using this fact, we classify all cyclic parallel hypersurfaces in complex hyperbolic two-plane Grassmannians with non-vanishing geodesic Reeb flow. Next, we give a non-existence theorem for cyclic Hopf hypersurfaces in complex two-plane Grassmannians.

Funder

National Research Foundation

National Research Foundation of Korea

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyclic semi-parallel real hypersurfaces in complex Grassmannians of rank two;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-09-23

2. Weakly Supervised Segmentation with Point Annotations for Histopathology Images via Contrast-Based Variational Model;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

3. Cyclic parallel structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2021-08-12

4. Quadratic Killing normal Jacobi operator for real hypersurfaces in complex Grassmannians of rank 2;Journal of Geometry and Physics;2021-02

5. Real hypersurfaces in the complex quadric with generalized Killing shape operator;Journal of Geometry and Physics;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3