Transversely Hessian foliations and information geometry

Author:

Boyom Michel Nguiffo1,Wolak Robert A.2

Affiliation:

1. IMAG UMR 5149, Université de Montpellier 2, Pl. E. Bataillon, F-34095 Montpellier Cedex 5, France

2. Wydzial Mathematyki i Informatyki, Uniwersytet Jagiellonski, Lojasiewicza 6, Krakow, Poland

Abstract

A family of probability distributions parametrized by an open domain [Formula: see text] in [Formula: see text] defines the Fisher information matrix on this domain which is positive semi-definite. In information geometry, the standard assumption has been that the Fisher information matrix tensor is positive definite defining in this way a Riemannian metric on [Formula: see text]. It seems to be quite a strong condition. In general, not much can be said about the Fisher information matrix tensor. To develop a more general theory, we weaken the assumption and replace “positive definite” by the existence of a suitable torsion-free connection. It permits us to define naturally a foliation with a transversely Hessian structure. We develop the theory of transversely Hessian foliations along the lines of the classical theory.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Reference15 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3