On stable CMC free-boundary surfaces in a strictly convex domain of a bi-invariant Lie group

Author:

Barbosa Ezequiel1,Santana Farley1,Upadhyay Abhitosh2ORCID

Affiliation:

1. Departamento de Matemática, Universidade Federal de Minas Gerais (UFMG), Caixa Postal 702, 30123-970 Belo Horizonte, MG, Brazil

2. Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

Abstract

Let [Formula: see text] be a three-dimensional Lie group with a bi-invariant metric. Consider [Formula: see text] a strictly convex domain in [Formula: see text]. We prove that if [Formula: see text] is a stable CMC free-boundary surface in [Formula: see text] then [Formula: see text] has genus either 0 or 1, and at most three boundary components. This result was proved by Nunes [I. Nunes, On stable constant mean curvature surfaces with free-boundary, Math. Z. 287(1–2) (2017) 73–479] for the case where [Formula: see text] and by R. Souam for the case where [Formula: see text] and [Formula: see text] is a geodesic ball with radius [Formula: see text], excluding the possibility of [Formula: see text] having three boundary components. Besides [Formula: see text] and [Formula: see text], our result also apply to the spaces [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. When [Formula: see text] and [Formula: see text] is a geodesic ball with radius [Formula: see text], we obtain that if [Formula: see text] is stable then [Formula: see text] is a totally umbilical disc. In order to prove those results, we use an extended stability inequality and a modified Hersch type balancing argument to get a better control on the genus and on the number of connected components of the boundary of the surfaces.

Funder

National Postdoctoral Fellow of Science and Engineering Research Board

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3