Affiliation:
1. Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Abstract
If G is a reductive Lie group of Harish-Chandra class, H is a symmetric subgroup, and π is a discrete series representation of G, the authors give a condition on the pair (G, H) which guarantees that the direct integral decomposition of π|H contains each irreducible representation of H with finite multiplicity. In addition, if G is a reductive Lie group of Harish-Chandra class, and H ⊂ G is a closed, reductive subgroup of Harish-Chandra class, the authors show that the multiplicity function in the direct integral decomposition of π|H is constant along "continuous parameters". In obtaining these results, the authors develop a new technique for studying multiplicities in the restriction π|H via convolution with Harish-Chandra characters. This technique has the advantage of being useful for studying the continuous spectrum as well as the discrete spectrum.
Publisher
World Scientific Pub Co Pte Lt
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献