Turaev–Viro invariants and cabling operations

Author:

Kumar Sanjay1,Melby Joseph M.2

Affiliation:

1. Department of Mathematics, University of California, Santa Barbara, Santa Barbara, CA 93106-6105, USA

2. Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA

Abstract

In this paper, we study the variation of the Turaev–Viro invariants for [Formula: see text]-manifolds with toroidal boundary under the operation of attaching a [Formula: see text]-cable space. We apply our results to a conjecture of Chen and Yang which relates the asymptotics of the Turaev–Viro invariants to the simplicial volume of a compact oriented [Formula: see text]-manifold. For [Formula: see text] and [Formula: see text] coprime, we show that the Chen–Yang volume conjecture is stable under [Formula: see text]-cabling. We achieve our results by studying the linear operator [Formula: see text] associated to the torus knot cable spaces by the Reshetikhin–Turaev [Formula: see text]-Topological Quantum Field Theory (TQFT), where the TQFT is well-known to be closely related to the desired Turaev–Viro invariants. In particular, our utilized method relies on the invertibility of the linear operator for which we provide necessary and sufficient conditions.

Funder

NSF

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3