Knot concordance invariants from Seiberg–Witten theory and slice genus bounds in 4-manifolds

Author:

Baraglia David1ORCID

Affiliation:

1. School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

Abstract

We construct a new family of knot concordance invariants [Formula: see text], where [Formula: see text] is a prime number. Our invariants are obtained from the equivariant Seiberg–Witten–Floer cohomology, constructed by the author and Hekmati, applied to the degree [Formula: see text] cyclic cover of [Formula: see text] branched over [Formula: see text]. In the case [Formula: see text], our invariant [Formula: see text] shares many similarities with the knot Floer homology invariant [Formula: see text] defined by Hom and Wu. Our invariants [Formula: see text] give lower bounds on the genus of any smooth, properly embedded, homologically trivial surface bounding [Formula: see text] in a definite [Formula: see text]-manifold with boundary [Formula: see text].

Publisher

World Scientific Pub Co Pte Ltd

Reference18 articles.

1. Equivariant Seiberg–Witten–Floer cohomology

2. A note on cobordisms of algebraic knots

3. Stably slice disks of links

4. M. H. Freedman and F. Quinn , Topology of 4-Manifolds, Princeton Mathematical Series, Vol. 39 (Princeton University Press, Princeton, NJ, 1990), pp. viii+259.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3