The Gromov–Witten invariants of the Hilbert schemes of points on surfaces with pg > 0

Author:

Hu Jianxun1,Li Wei-Ping2,Qin Zhenbo3

Affiliation:

1. Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China

2. Department of Mathematics, HKUST, Clear Water Bay, Kowloon, Hong Kong

3. Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

Abstract

In this paper, we study the Gromov–Witten theory of the Hilbert schemes X[n] of points on a smooth projective surface X with positive geometric genus pg. For fixed distinct points x1, …, xn-1 ∈ X, let βn be the homology class of the curve {ξ + x2 + ⋯ + xn-1 ∈ X[n] | Supp (ξ) = {x1}}, and let βKX be the homology class of {x + x1 + ⋯ + xn-1 ∈ X[n] | x ∈ KX}. Using cosection localization technique due to Y. Kiem and J. Li, we prove that if X is a simply connected surface admitting a holomorphic differential two-form with irreducible zero divisor, then all the Gromov–Witten invariants of X[n] defined via the moduli space [Formula: see text] of stable maps vanish except possibly when β is a linear combination of βn and βKX. When n = 2, the exceptional cases can be further reduced to the Gromov–Witten invariants: [Formula: see text] with [Formula: see text] and d ≤ 3, and [Formula: see text] with d ≥ 1. When [Formula: see text], we show that [Formula: see text] which is consistent with a well-known formula of C. Taubes. In addition, for an arbitrary surface X and d ≥ 1, we verify that [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Reference24 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extremal Gromov-Witten invariants of the Hilbert scheme of Points;Forum of Mathematics, Sigma;2023

2. Gromov–Witten invariants of Hilbert schemes of two points on elliptic surfaces;International Journal of Mathematics;2022-09-15

3. Virtual intersection theories;Advances in Mathematics;2021-09

4. On the numerical rational connectedness of the Hilbert schemes of 2-points on rational surfaces;manuscripta mathematica;2019-05-03

5. Localizing Virtual Structure Sheaves by Cosections;International Mathematics Research Notices;2018-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3