Affiliation:
1. Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Abstract
As a generalization of quandles, biquandles have given many invariants of classical/surface/virtual links. In this paper, we show that the fundamental quandle [Formula: see text] of any classical/surface link [Formula: see text] detects the fundamental biquandle [Formula: see text]; more precisely, there exists a functor [Formula: see text] from the category of quandles to that of biquandles such that [Formula: see text]. Then, we can expect invariants from biquandles to be reduced to those from quandles. In fact, we introduce a right-adjoint functor [Formula: see text] of [Formula: see text], which implies that the coloring number of a biquandle [Formula: see text] is equal to that of the quandle [Formula: see text].
Funder
Japan Society for the Promotion of Science
Publisher
World Scientific Pub Co Pte Lt
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quandle colorings vs. biquandle colorings;Topology and its Applications;2024-03