Affiliation:
1. Mathematisches Institut, Universität Bern, Alpeneggstrasse 22, 3012 Bern, Switzerland
2. Dipartimento di Matematica, Università di Roma “Tor Vergata”, I–00133 Roma, Italy
Abstract
Given a spectral triple on a [Formula: see text]-algebra [Formula: see text] together with a unital injective endomorphism [Formula: see text], the problem of defining a suitable crossed product [Formula: see text]-algebra endowed with a spectral triple is addressed. The proposed construction is mainly based on the works of Cuntz and [A. Hawkins, A. Skalski, S. White and J. Zacharias, On spectral triples on crossed products arising from equicontinuous actions, Math. Scand. 113(2) (2013) 262–291], and on our previous papers [V. Aiello, D. Guido and T. Isola, Spectral triples for noncommutative solenoidal spaces from self-coverings, J. Math. Anal. Appl. 448(2) (2017) 1378–1412; V. Aiello, D. Guido and T. Isola, A spectral triple for a solenoid based on the Sierpinski gasket, SIGMA Symmetry Integrability Geom. Methods Appl. 17(20) (2021) 21]. The embedding of [Formula: see text] in [Formula: see text] can be considered as the dual form of a covering projection between noncommutative spaces. A main assumption is the expansiveness of the endomorphism, which takes the form of the local isometricity of the covering projection, and is expressed via the compatibility of the Lip-norms on [Formula: see text] and [Formula: see text].
Funder
ERC
Swiss National Science foundation
MIUR
Publisher
World Scientific Pub Co Pte Ltd