COMPACT LIE GROUP ACTIONS ON CLOSED MANIFOLDS OF NON-POSITIVE CURVATURE

Author:

XU BIN12

Affiliation:

1. Chern Institute of Mathematics, Nankai University, Tianjin 300071, China

2. Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Abstract

Borel proved that, if a finite group F acts effectively and continuously on a closed aspherical manifold M with centerless fundamental group π1(M), then a natural homomorphism ψ from F to the outer automorphism group Out π1(M) of π1(M), called the associated abstract kernel, is a monomorphism. In this paper, we investigate to what extent Borel's theorem holds for a compact Lie group G acting effectively and smoothly on a particular orientable aspherical manifold N admitting a Riemannian metric g0 of non-positive curvature in case that π1(N) has a non-trivial center. It turns out that if G attains the maximal dimension equal to the rank of Center π1(N) and the metric g0 is real analytic, then any element of G defining a diffemorphism homotopic to the identity of N must be contained in the identity component G0 of G. Moreover, if the inner automorphism group of π1(N) is torsion free, then the associated abstract kernel ψ : G/G0 → Out π1(N) is a monomorphism. The same result holds for the non-orientable N's under certain technical assumptions. Our result is an application of a theorem by Schoen–Yau [12] on harmonic mappings.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3