Maximally Frobenius-destabilized vector bundles over smooth algebraic curves

Author:

Zhao Yifei1

Affiliation:

1. Department of Mathematics, Columbia University, New York, NY 10027, USA

Abstract

Vector bundles in positive characteristics have a tendency to be destabilized after pulling back by the Frobenius morphism. In this paper, we closely examine vector bundles over curves that are, in an appropriate sense, maximally destabilized by the Frobenius morphism. Then we prove that such bundles of rank 2 exist over any curve in characteristic 3, and are unique up to twisting by a line bundle. We also give an application of such bundles to the study of ample vector bundles, which is valid in all characteristics.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New constructions of nef classes on self-products of curves;Mathematische Zeitschrift;2022-08-16

2. Seshadri constants for vector bundles;Journal of Pure and Applied Algebra;2021-04

3. Meshing limit line of the conical surface enveloping conical worm pair;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2019-09-29

4. ON MAXIMALLY FROBENIUS DESTABILISED VECTOR BUNDLES;Bulletin of the Australian Mathematical Society;2019-01-04

5. Frobenius stratification of moduli spaces of rank 3 vector bundles in positive characteristic 3, I;Transactions of the American Mathematical Society;2018-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3