Submaximally symmetric c-projective structures

Author:

Kruglikov Boris1,Matveev Vladimir2,The Dennis34

Affiliation:

1. Institute of Mathematics and Statistics, University of Tromsø, Tromsø 90-37, Norway

2. Institut für Mathematik, Friedrich-Schiller-Universität, 07737 Jena, Germany

3. Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia

4. Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

Abstract

[Formula: see text]-projective structures are analogues of projective structures in the almost complex setting. The maximal dimension of the Lie algebra of [Formula: see text]-projective symmetries of a complex connection on an almost complex manifold of [Formula: see text]-dimension [Formula: see text] is classically known to be [Formula: see text]. We prove that the submaximal dimension is equal to [Formula: see text]. If the complex connection is minimal (encoded as a normal parabolic geometry), the harmonic curvature of the [Formula: see text]-projective structure has three components and we specify the submaximal symmetry dimensions and the corresponding geometric models for each of these three pure curvature types. If the connection is non-minimal, we introduce a modified normalization condition on the parabolic geometry and use this to resolve the symmetry gap problem. We prove that the submaximal symmetry dimension in the class of Levi-Civita connections for pseudo-Kähler metrics is [Formula: see text], and specializing to the Kähler case, we obtain [Formula: see text]. This resolves the symmetry gap problem for metrizable [Formula: see text]-projective structures.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On uniqueness of submaximally symmetric parabolic geometries;International Journal of Mathematics;2024-01-24

2. Geometry of solutions to the c-projective metrizability equation;Annali di Matematica Pura ed Applicata (1923 -);2022-12-14

3. C-projective geometry;Memoirs of the American Mathematical Society;2020-09

4. C-projective symmetries of submanifolds in quaternionic geometry;Annals of Global Analysis and Geometry;2018-10-04

5. SUBMAXIMALLY SYMMETRIC ALMOST QUATERNIONIC STRUCTURES;Transformation Groups;2017-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3