Affiliation:
1. Department of Mathematics, San Francisco University High School, 3065 Jackson St, San Francisco, CA 94115, USA
Abstract
Let C be a curve of genus two. We denote by [Formula: see text] the moduli space of semi-stable vector bundles of rank 3 and trivial determinant over C, and by Jd the variety of line bundles of degree d on C. In particular, J1 has a canonical theta divisor Θ. The space [Formula: see text] is a double cover of ℙ8 = |3Θ| branched along a sextic hypersurface, the Coble sextic. In the dual [Formula: see text], where J1 is embedded, there is a unique cubic hypersurface singular along J1, the Coble cubic. We prove that these two hypersurfaces are dual, inducing a non-abelian Torelli result. Moreover, by looking at some special linear sections of these hypersurfaces, we can observe and reinterpret some classical results of algebraic geometry in a context of vector bundles: the duality of the Segre–Igusa quartic with the Segre cubic, the symmetric configuration of 15 lines and 15 points, the Weddle quartic surface and the Kummer surface.
Publisher
World Scientific Pub Co Pte Lt
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献