Affiliation:
1. Department of Mathematical Sciences, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
Abstract
We study the deformations of a smooth curve [Formula: see text] on a smooth projective [Formula: see text]-fold [Formula: see text], assuming the presence of a smooth surface [Formula: see text] satisfying [Formula: see text]. Generalizing a result of Mukai and Nasu, we give a new sufficient condition for a first order infinitesimal deformation of [Formula: see text] in [Formula: see text] to be primarily obstructed. In particular, when [Formula: see text] is Fano and [Formula: see text] is [Formula: see text], we give a sufficient condition for [Formula: see text] to be (un)obstructed in [Formula: see text], in terms of [Formula: see text]-curves and elliptic curves on [Formula: see text]. Applying this result, we prove that the Hilbert scheme [Formula: see text] of smooth connected curves on a smooth quartic [Formula: see text]-fold [Formula: see text] contains infinitely many generically non-reduced irreducible components, which are variations of Mumford’s example for [Formula: see text].
Funder
Japan Society for the Promotion of Science
Publisher
World Scientific Pub Co Pte Lt
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献