Contact instantons with Legendrian boundary condition: A priori estimates, asymptotic convergence and index formula

Author:

Oh Yong-Geun12ORCID,Yu Seungook12ORCID

Affiliation:

1. Center for Geometry and Physics, Institute for Basic Science (IBS), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Korea 790-784 & POSTECH, Gyeongsangbuk-do, Korea

2. POSTECH & Center for Geometry and Physics, Institute for Basic Science (IBS), 77 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do, Korea 790-784, Korea

Abstract

In this paper, we establish nonlinear ellipticity of the equation of contact instantons with Legendrian boundary condition on punctured Riemann surfaces by proving the a priori elliptic coercive estimates for the contact instantons with Legendrian boundary condition, and prove an asymptotic exponential [Formula: see text]-convergence result at a puncture under the uniform [Formula: see text] bound. We prove that the asymptotic charge of contact instantons at the punctures under the Legendrian boundary condition vanishes. This eliminates the phenomenon of the appearance of spiraling cusp instanton along a Reeb core, which removes the only remaining obstacle towards the compactification and the Fredholm theory of the moduli space of contact instantons in the open string case, which plagues the closed string case. Leaving the study of [Formula: see text]-estimates and details of Gromov-Floer-Hofer style compactification of contact instantons to [ 27 ], we also derive an index formula which computes the virtual dimension of the moduli space. These results are the analytic basis for the sequels [ 27 – 29 ] and [ 36 ] containing applications to contact topology and contact Hamiltonian dynamics.

Funder

IBS

Publisher

World Scientific Pub Co Pte Ltd

Reference29 articles.

1. M. F. Atiyah and R. Bott, The index problem for manifolds with boundary (Oxford Univ. Press, London, 1964), pp. 175–186.

2. Characteristic class entering in quantization conditions

3. The contact homology of Legendrian submanifolds in R2n+1

4. Legendrian contact homology in 𝑃×ℝ

5. AMS/IP Studies in Advanced Mathematics;Fukaya K.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3