New solid-state organic scintillators for fast and thermal neutron detection

Author:

Zaitseva N.1,Glenn A.1,Mabe A.1,Carman L.1,Payne S.1

Affiliation:

1. Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551, USA

Abstract

Detection of special nuclear materials (SNM) requires instruments that can detect and characterize uranium and plutonium isotopes, having at the same time the ability to discriminate among different types of radiation. For many decades, neutron detection has been based on 3He proportional counters sensitive primarily to thermal neutrons. The most common methods for detection of fast neutrons have been based on liquid scintillators with pulse shape discrimination (PSD). The shortage of 3He and handling issues with liquid scintillators stimulated a search for efficient solid-state PSD materials. Recent studies conducted at LLNL led to development of new materials, among which are organic crystals with excellent PSD and first PSD plastics for fast neutron detection. More advantages are introduced by plastics doped with neutron capture agents, such as 10B and 6Li, that can be used without moderation for combined detection of both thermal and fast neutrons, offering, in addition, a unique “triple” PSD for signal separation between fast neutrons, thermal neutrons, and gamma-rays. More recent studies have been focused on development of deuterated scintillators that can be used for neutron spectroscopy without time-of-flight (ToF). Among commercially produced materials are large-scale (>10 cm) stilbene crystals grown by the inexpensive solution technique, and different types of PSD plastics that, due to the deployment advantages and ease of fabrication, create a basis for the widespread use of solid-state scintillators as large-volume and low-cost neutron detectors.

Publisher

World Scientific Pub Co Pte Lt

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3