Efficient Algebraic Multigrid Preconditioners on Clusters of GPUs

Author:

Abdullahi Hassan Ambra1,Cardellini Valeria1,D’Ambra Pasqua2,di Serafino Daniela3ORCID,Filippone Salvatore4

Affiliation:

1. Dipartimento di Ingegneria Civile e Ingegneria Informatica Università degli Studi di Roma “Tor Vergata”, via del Politecnico 1, 00133 Roma, Italy

2. Istituto per le Applicazioni del Calcolo “Mauro Picone”, Consiglio Nazionale delle Ricerche, via P. Castellino 111, 80131 Napoli, Italy

3. Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli” viale A. Lincoln 5, 81100 Caserta, Italy

4. Centre for Computational Engineering Sciences, School of Aerospace, Transport and Manufacturing, Cranfield University, Whittle Bldg. 52, Cranfield MK43 0AL, United Kingdom

Abstract

Many scientific applications require the solution of large and sparse linear systems of equations using Krylov subspace methods; in this case, the choice of an effective preconditioner may be crucial for the convergence of the Krylov solver. Algebraic MultiGrid (AMG) methods are widely used as preconditioners, because of their optimal computational cost and their algorithmic scalability. The wide availability of GPUs, now found in many of the fastest supercomputers, poses the problem of implementing efficiently these methods on high-throughput processors. In this work we focus on the application phase of AMG preconditioners, and in particular on the choice and implementation of smoothers and coarsest-level solvers capable of exploiting the computational power of clusters of GPUs. We consider block-Jacobi smoothers using sparse approximate inverses in the solve phase associated with the local blocks. The choice of approximate inverses instead of sparse matrix factorizations is driven by the large amount of parallelism exposed by the matrix-vector product as compared to the solution of large triangular systems on GPUs. The selected smoothers and solvers are implemented within the AMG preconditioning framework provided by the MLD2P4 library, using suitable sparse matrix data structures from the PSBLAS library. Their behaviour is illustrated in terms of execution speed and scalability, on a test case concerning groundwater modelling, provided by the Jülich Supercomputing Center within the Horizon 2020 Project EoCoE.

Funder

Horizon 2020

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3