SYMBOLIC EXPRESSION ANALYSIS FOR COMPILED COMMUNICATION

Author:

JONES ALEX K.1,SHAO SHUYI2,ZHANG YU1,MELHEM RAMI2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Pittsburgh, Benedum Hall, Pittsburgh, Pennsylvania 15261, USA

2. Computer Science Department, University of Pittsburgh, Sennott Square Bldg., Pittsburgh, Pennsylvania 15260, USA

Abstract

Compiled communication can benefit the parallel application design and performance in several ways such as analyzing the communication pattern to optimize a configurable network for performance improvement or to visualize the communication requirements to study and improve the application design. In this article we present symbolic expression analysis techniques in a MPI parallel compiler. Symbolic expression analysis allows the identification and representation of the communication pattern and also assists in the determination of communication phases in MPI parallel applications at compile-time. We demonstrate that using compiler analysis based on symbolic expression analysis to determine the communication pattern can provide an accurate visualization of the communication requirements. Using information from the compiler to program a circuit switching interconnect in multiprocessor systems has the potential to achieve more efficient communication with lower cost compared to packet/wormhole switching. For example, we demonstrate that our compiler approach provides an average of 2.6 times improvement in message delay over a threshold-based runtime system for our benchmarks with a maximum improvement of 9.7 times.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compiler-Assisted Data Distribution and Network Configuration for Chip Multiprocessors;IEEE Transactions on Parallel and Distributed Systems;2012-11

2. Compiler-assisted data distribution for chip multiprocessors;Proceedings of the 19th international conference on Parallel architectures and compilation techniques - PACT '10;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3