Affiliation:
1. Computer Science and Engineering Department, Faculty of Electronic Engineering, Menoufia University, Egypt
Abstract
This paper presents a hybrid approach based discrete Particle Swarm Optimization (PSO) and chaotic strategies for solving multi-objective task scheduling problem in cloud computing. The main purpose is to allocate the summited tasks to the available resources in the cloud environment with minimum makespan (i.e. schedule length) and processing cost while maximizing resource utilization without violating Service Level Agreement (SLA) among users and cloud providers. The main challenges faced by Particle Swarm Optimization (PSO) when used to solve scheduling problems are premature convergence and trapping into local optimum. This paper presents an enhanced Particle Swarm Optimization algorithm hybridized with Chaotic Map strategies. The proposed approach is called Enhanced Particle Swarm Optimization based Chaotic Strategies (EPSOCHO) algorithm. Our proposed approach suggests two Chaotic Map strategies: sinusoidal iterator and Lorenz attractor to enhanced PSO algorithm in order to get good convergence and diversity for optimizing the task scheduling in cloud computing. The proposed approach is simulated and implemented in Cloudsim simulator. The performance of the proposed approach is compared with the standard PSO algorithm, the improved PSO algorithm with Longest job to fastest processor (LJFP-PSO), and the improved PSO algorithm with minimum completion time (MCT-PSO) using different sizes of tasks and various benchmark datasets. The results clearly demonstrate the efficiency of the proposed approach in terms of makespan, processing cost and resources utilization.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献