Affiliation:
1. Logistical Computing and Internetworking Lab, Department of Computer Science, University of Tennessee, Knoxville, TN 37996, USA
Abstract
As peer-to-peer and wide-area storage systems become in vogue, the issue of delivering content that is cached, partitioned and replicated in the wide area, with high performance, becomes of great importance. This paper explores three algorithms for such downloads. The storage model is based on the Network Storage Stack, which allows for flexible sharing and utilization of writable storage as a network resource. The algorithms assume that data is replicated in various storage depots in the wide area, and the data must be delivered to the client either as a downloaded file or as a stream to be consumed by an application, such as a media player. The algorithms are threaded and adaptive, attempting to get good performance from nearby replicas, while still utilizing the faraway replicas. After defining the algorithms, we explore their performance downloading a 50 MB file replicated on six storage depots in the U.S., Europe and Asia, to two clients in different parts of the U.S. One algorithm, called progress-driven redundancy, exhibits excellent performance characteristics for both file and streaming downloads.
Publisher
World Scientific Pub Co Pte Lt
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献