Affiliation:
1. College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
2. Key Laboratory of Network Security and Cryptology Fujian Normal University, Fuzhou, Fujian, 35007, P. R. China
Abstract
The independent number and domination number are two essential parameters to assess the resilience of the interconnection network of multiprocessor systems which is usually modeled by a graph. The independent number, denoted by [Formula: see text], of a graph [Formula: see text] is the maximum cardinality of any subset [Formula: see text] such that no two elements in [Formula: see text] are adjacent in [Formula: see text]. The domination number, denoted by [Formula: see text], of a graph [Formula: see text] is the minimum cardinality of any subset [Formula: see text] such that every vertex in [Formula: see text] is either in [Formula: see text] or adjacent to an element of [Formula: see text]. But so far, determining the independent number and domination number of a graph is still an NPC problem. Therefore, it is of utmost importance to determine the number of independent and domination number of some special networks with potential applications in multiprocessor system. In this paper, we firstly resolve the exact values of independent number and upper and lower bound of domination number of the [Formula: see text]-graph, a common generalization of various popular interconnection networks. Besides, as by-products, we derive the independent number and domination number of [Formula: see text]-star graph [Formula: see text], [Formula: see text]-arrangement graph [Formula: see text], as well as three special graphs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian Province
China Postdoctoral Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Hardware and Architecture,Theoretical Computer Science,Software