Affiliation:
1. Suzhou Vocational Institute of Industrial Technology, Suzhou 215104, China
Abstract
Adaptive diagnosis is an approach in which tests can be scheduled dynamically during the diagnosis process based on the previous test outcomes. Naturally, reducing the number of test rounds as well as the total number of tests is a major goal of an efficient adaptive diagnosis algorithm. The adaptive diagnosis of multiprocessor systems under the PMC model has been widely investigated, while adaptive diagnosis using comparison model has been independently discussed only for three networks, including hypercube, torus, and completely connected networks. In addition, adaptive diagnosis of general Hamiltonian networks is more meaningful than that of special graph. In this paper, the problem of adaptive fault diagnosis in Hamiltonian networks under the comparison model is explored. First, we propose an adaptive diagnostic scheme which takes five to six test rounds. Second, we derive a dynamic upper bound of the number of fault nodes instead of setting a value like normal. Finally, we present an algorithm such that at least one sequence obtained from cycle partition can be picked out and all nodes in this sequence can be identified based on the previous upper bound.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献