Data-centric Networking with Parallel and Distributed Architecture Performs Performance Analysis to Protect Critical Infrastructure in the Future Power System Network Based on IoT

Author:

Xie Linjiang1,Hang Feilu1,Guo Wei1,Zhang Zhenhong1,Li Hanruo1

Affiliation:

1. Information Center of Yunnan, Power Grid Co. Ltd., Kunming, Yunnan 650000, China

Abstract

Modern information and communication technologies are being incorporated into traditional power grid systems to create the smart grid of the real world. The newly provided information flow and intrinsic creation, transport, storage, and the use of electricity are all facilitated by the energy transfer, especially as the complete deployment of the Internet of Things in the power grid, also known as the power Internet of Things (PIoT). These new 5G technologies and the value generated by novel services and market processes can all be used to maximize the value of scarce resources like energy. This paper develops a framework for a cyber-physical power system based on IoT (CPPS-IoT). Automobiles, aircraft, defense, factory equipment, wellness equipment, industrial control, connected cars, and other sectors and industries are all benefiting from the fast growth of CPS technology. A smart electric grid is created when dispersed sources of energy and electrical infrastructure are linked together to provide global exchange of information, sensible decision, including true flexible control using the CPPS. Cyber-physical systems have great benefits because they combine IoT with physical processes and mediate how humans interact with the natural environment. Cyber-physical systems use sensor networks and embedded computers to keep tabs on and manipulate the physical world around them. They include built-in feedback loops that enable the environment to trigger their communication, control, or processing. The proposed method makes systems safer and more efficient, decreasing the cost of developing and running these systems. The accuracy is 89%, and the proposed method’s error rate is 48%.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3