Applied On-Chip Machine Learning for Dynamic Resource Control in Multithreaded Processors

Author:

Carroll Shane1ORCID,Lin Wei-Ming1

Affiliation:

1. Department of Electrical and Computer Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

Abstract

In this paper, we propose a machine learning algorithm to control instruction fetch bandwidth in a simultaneous multithreaded CPU. In a simultaneous multithreaded CPU, multiple threads occupy pools of hardware resources in the same clock cycle. Under some conditions, one or more threads may undergo a period of inefficiency, e.g., a cache miss, thereby inefficiently using shared resources and degrading the performance of other threads. If these inefficiencies can be identified at runtime, the offending thread can be temporarily blocked from fetching new instructions into the pipeline and given time to recover from its inefficiency, and prevent the shared system resources from being wasted on a stalled thread. In this paper, we propose a machine learning approach to determine when a thread should be blocked from fetching new instructions. The model is trained offline and the parameters embedded in a CPU, which can be queried with runtime statistics to determine if a thread is running inefficiently and should be temporarily blocked from fetching. We propose two models: a simple linear model and a higher-capacity neural network. We test each model in a simulation environment and show that system performance can increase by up to 19% on average with a feasible implementation of the proposed algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile Gaming Experience: An Approach Based on Thread Scheduler & Thread Priority Manager;2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC);2023-12-18

2. Micro-Armed Bandit: Lightweight & Reusable Reinforcement Learning for Microarchitecture Decision-Making;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

3. Reinforcement learning-based register renaming policy for simultaneous multithreading CPUs;Expert Systems with Applications;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3