Inverse Hall–Petch effect in nanocrystalline ice predicted by machine-learned coarse-grained molecular simulations

Author:

Chen Guang1,Tao Lei1,Kröger Martin2,Li Ying34

Affiliation:

1. Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA

2. Department of Materials, Polymer Physics, ETH Zürich, Zürich CH-8093, Switzerland

3. Department of Mechanical Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA

4. Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA

Abstract

We study the grain-size effect on mechanical behaviors of polycrystalline ice at nanoscale through large-scale molecular dynamics simulations, enabled by an accurate and efficient machine-learned coarse-grained water model [H. Chan, M. J. Cherukara, B. Narayanan, T. D. Loeffler, C. Benmore, S. K. Gray and S. K. Sankaranarayanan. Machine learning coarse grained models for water. Nature Communications 10(1), p. 379, 2019]. Polycrystalline ice systems with different grain sizes in the range of [Formula: see text][Formula: see text]nm are systematically investigated through uniaxial tensile tests. Simulation results reveal that Young’s modulus and yield strength increase as the grain size increases, leading to an inverse Hall–Petch effect in nanocrystalline ice. Such an observation is significantly different from the conventional Hall–Petch effect in polycrystalline ice observed by experiments at millimeter scale. The deformation behavior suggests that grain boundaries (GBs), rather than grain interiors, play the active role in accommodating external loading in nanocrystalline ice. Further void analysis of nanocrystalline ice during deformation reveals that nanocrack initiates and propagates along GBs and eventually leads to failure of systems with larger grain sizes ([Formula: see text][Formula: see text]nm), yielding a sudden drop in the stress–strain curve. While for systems with smaller grain sizes ([Formula: see text][Formula: see text]nm), only extensive plastic deformation is presented without significant void growth. Our simulation results demonstrate that the GB sliding is the governing mechanism for the inverse Hall–Petch effect observed in nanocrystalline ice.

Funder

National Science Foundation

Swiss National Science Foundation

Frontera project and the National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Polymers and Plastics,Mechanics of Materials,Atomic and Molecular Physics, and Optics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3