Affiliation:
1. Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt, Germany
Abstract
In this work, we derive the [Formula: see text]-, [Formula: see text]- and [Formula: see text]-integrals of body charges and point charges in electrostatics, and the [Formula: see text]-, [Formula: see text]- and [Formula: see text]-integrals of body forces and point forces in elasticity and we investigate their physical interpretation. Electrostatics is considered as field theory of an electrostatic scalar potential [Formula: see text] (scalar field theory) and elasticity as field theory of a displacement vector [Formula: see text] (vector field theory). One of the basic quantities appearing in the [Formula: see text]-, [Formula: see text]- and [Formula: see text]-integrals is the electrostatic Maxwell–Minkowski stress tensor in electrostatics and the Eshelby stress tensor in elasticity. Among others, it is shown that the [Formula: see text]-integral of body charges in electrostatics represents the electrostatic part of the Lorentz force, and the [Formula: see text]-integral of body forces in elasticity represents the Cherepanov force. The [Formula: see text]-integral between two-point sources (charges or forces) equals half the electrostatic interaction energy in electrostatics and half the elastic interaction energy in elasticity between these two-point sources. The [Formula: see text]-integral represents the configurational vector moment or torque between two body or point sources (charges or forces). Interesting mathematical and physical features are revealed through the connection of the [Formula: see text]-, [Formula: see text]- and [Formula: see text]-integrals with their corresponding infinitesimal generators in both theories. Several important outcomes arise from the comparison between the examined concepts in electrostatics and elasticity. Differences and similarities, that provide a deeper insight into the [Formula: see text]-, [Formula: see text]- and [Formula: see text]-integrals and the related quantities to them, are pointed out and discussed. The presented results show that the [Formula: see text]-, [Formula: see text]- and [Formula: see text]-integrals are fundamental concepts which can be applied in any field theory.
Publisher
World Scientific Pub Co Pte Lt
Subject
Polymers and Plastics,Mechanics of Materials,Atomic and Molecular Physics, and Optics,Ceramics and Composites
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献