STRUCTURAL, OPTICAL AND GAS SENSING PROPERTIES OF ZnO, SnO2 AND ZTO NANOSTRUCTURES

Author:

FOUAD O. A.1,GLASPELL G.2,EL-SHALL M. S.2

Affiliation:

1. Central Metallurgical Research and Development Institute, CMRDI, P. O. Box 87, Helwan 11421, Egypt

2. Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA

Abstract

Tetrapods, nanobelts and polyhedron-shape like zinc oxide (ZnO) , tin dioxide (SnO2) nanostructures and ZnO/ZnSnO3/Zn2SnO4 (ZTO) composite functional semiconducting nanostructures have been synthesized successfully by the vapor–solid growth process. XRD analyses showed that ZnO with wurtzite, SnO2 with rutile and zinc stannate (ZnSnO3) and/or dizinc stannate (Zn2SnO4) with polyhedral crystal structure were condensed from the vapor phase when Zn and/or Sn metal powders individually or mixed were used as the starting materials. The driving forces for growth of these nanostructures were found to be vapor density, temperature, pressure and place of deposition from the source materials. Typically, the ZnO nanobelts have lengths of several hundred of nanometers and widths of about 10–15 nm. The average particle size of SnO2 are in the range of about 10–20 nm. Uniform hexagonal-shaped crystals of ZnO/ZnSnO3/Zn2SnO4 composite in the range of 50–300 nm as estimated from TEM images are observed. Based on the TEM, optical absorption and emission studies and the CO gas sensing characteristics of the prepared materials showed good crystal quality implying that the ZnO , SnO2 and ZnO/ZnSnO3/Zn2SnO4 nanostructures may suggest possible applications in optoelectronic devices and chemical gas sensors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3