Affiliation:
1. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054 Chengdu, Sichuan, People’s Republic of China
Abstract
Developing nonmetal-doped mesoporous TiO2 is highly attractive for preparing semiconductor visible photocatalyst with high activities. Here, we prepare N/F co-doped mesoporous TiO2 with high vis-photocatalytic activities by a simple liquid phase deposition process followed by annealing in air using C[Formula: see text]TAB as a bi-functional template (forming mesoporous and providing dopants). N2 adsorption isotherms, low-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate the formation of wormhole-like mesoporous structure. Wide-angle XRD and high-resolution TEM demonstrate the presence of anatase TiO2 mesopore wall. XPS analyses reveal that N is doped into TiO2 lattice in the forms of substitutional and interstitial N species, and that F is doped into the TiO2 lattice in the form of interstitial F. The mesopore-forming and doping mechanisms are thoroughly discussed based on the bi-function of C[Formula: see text]TAB template. Mesoporous structure results in a high BET surface area of TiO2. High-concentration nitrogen species in anatase lattice and mesoporous structure remarkably increase the visible absorption of TiO2. As a result, the reaction rate constant of MB degradation catalyzed by N/F co-doped mesoporous TiO2 photocatalysts is about 7 times that by P25.
Funder
National Natural Science Foundation of China
Foundation for Innovation Groups of Basic Research in Gansu Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献