In situ Synthesis of Nickel-Dimethylglyoxime/Black Phosphorus Nanorods for Photocatalytic Hydrogen Production from Water Splitting

Author:

Wang Hui’e1

Affiliation:

1. School of Energy and Chemical Engineering, Ningxia Vocational Technical College of Industry and Commerce, Yinchuan 750021, P. R. China

Abstract

Here, a novel material consisting of black phosphorus (BP) and nickel-dimethylglyoxime nanorods was successfully prepared via a facile in situ calcination strategy, which possesses efficient catalytic activity for hydrogen production from water splitting. The reason for this phenomenon was explained by a series of characterization technologies such as SEM, TEM, XRD, UV–Vis, XPS and photoelectrochemical. We demonstrated that the fast e transport channels were provided by the formed hollow structure of C@Ni-D nanorods, the highly exposed active sites on C@Ni-BP nanorods benefiting from the direct in situ growth of BP, the resulted synergetic effects of C@Ni-D-2 nanorods and BP achieved a better performance of photocatalytic hydrogen production from water splitting. The optimal hydrogen generation of C@Ni-BP-2 nanorods could reach up to 600[Formula: see text][Formula: see text]mol within 180[Formula: see text]min and the rate of hydrogen production did not decrease significantly after four repeated reaction cycles. This work may offer new direction in situ growth of novel catalysts for achieving highly efficient hydrogen production.

Funder

Natural Science Foundation of the Ningxia Hui Autonomous Region

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3