Green Synthesis of Silver Nanoparticles by Tannic Acid with Improved Catalytic Performance Towards the Reduction of Methylene Blue

Author:

Hao Yueyue1,Zhang Nan1,Luo Jing1ORCID,Liu Xiaoya1

Affiliation:

1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China

Abstract

In this work, a facile, environmental-friendly and cost-effective method was developed to prepare silver nanoparticles (Ag NPs) in aqueous solution at room temperature. In our approach, tannic acid was employed as the reducing agent and stabilizer simultaneously, avoiding the usage of any toxic agent. The tannic acid derived silver nanoparticles (TA-Ag NPs) were fully characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analyzer (TGA). The particle size of the synthesized TA-Ag NPs is tunable from 6.5[Formula: see text]nm to 19.2[Formula: see text]nm with narrow distribution by varying the molar ratio of TA to silver precursor. Efficient reduction of methylene blue (MB) catalyzed by TA-Ag NPs was observed, which was dependent upon the particle size of TA-Ag NPs or the TA concentration used for synthesis. By optimizing the TA concentration, complete reduction of MB was accomplished by TA-Ag NPs within 8[Formula: see text]min. The high catalytic activity of TA-Ag NPs was attributed to their nanosize and good dispersity as well as the electrostatic interaction between TA and MB which induces rapid enrichment of MB towards TA-Ag NPs, creating a locally concentrated layer of MB. Considering the facile and environmental-friendly preparation procedure and excellent catalytic activity, TA-Ag NPs are green, efficient and highly economical candidates for the catalysis of organic dyes and extendable of other reducible contaminants as well.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

MOE & SAFEA for the 111 Project

Postgraduate Research & Practice Innovation Program of Jiangsu Provence

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3