Constructing Antibacterial Poly(Lactic Acid)/Chitosan Nanoparticles

Author:

Ibili Hatice1,Dasdemir Mehmet1

Affiliation:

1. Department of Textile Engineering, Gaziantep University, Gaziantep 27310, Turkey

Abstract

Single and coaxial electrospraying techniques are superior nanofabrication methods for nanomaterial production. These nanomaterials have the unique capability to manipulate various surfaces and bring diverse additional functionalities. The objectives of the present study are to produce poly(lactic acid) (PLA)/chitosan nanoparticles and investigate the synergy of nanosize effect with different morphology structures in terms of achieved functionality. The impact of ambient humidity on coating morphology was examined via a scanning electron microscope, field emission scanning electron microscope and dynamic light scattering for size measurements and dimensional characterization of nanoparticles. The obtained results indicate that electrosprayed PLA polymer shows a tendency to have a more distinct pore structure than electrosprayed chitosan polymer. Humidity has an increasing effect on particle size. Another finding is the relationship between hygroscopic characteristics of polymer with nanoparticle size, polydispersity, surface morphology and pore structure. Overall, these methods introduced high antibacterial activity obtainment on electrosprayed surfaces. Up to 99.99% antibacterial activity was accomplished against Escherichia coli ([Formula: see text]) and Staphylococcus aureus (S. aureus) bacteria in regard to this study. The created surface layers also have the extensive potential of practicability for diversified kinds of surfaces and numerous combinations of polymers for multifunctional applications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3